
Breve guida di riferimento per l’uso delle librerie maxmspsdk in semplici
external objects

t_object

Each Max external object needs a C structure definition. If you’re defining a normal object, it
needs to start with a structure called a t_object. This field is not a pointer, but an entire
structure contained inside your object. Typically, Max objects have followed the UNIX
convention of starting fields of data structures with a lowercase letter followed by an
underscore. The letter is normally the first letter of the name of the structure. Here’s a
hypothetical structure for an t_alarmclock object.

typedef struct alarmclock {

t_object a_ob; /* must be first in any non UI object

*/

long a_hours;

long a_minutes;

long a_seconds;

long a_alarmset;

} t_alarmclock;

The t_object contains references to your object’s class definition as well as some other
information. This class reference allows an instance of your class to respond to messages in
the right way. You’re free to use any data type you wish as a field in your object’s structure.
Keep in mind that Max stores floating point numbers internally as type float, so any extra
precision not contained in a float may be lost. (This doesn’t mean you can’t perform
extraprecision computation inside your object.) In addition, integers are passed from Max to
functions you write as longs, and communicated to outlets and most other Max structures as
longs.

setup

Use the setup function to initialize your class by informing Max of its size, the name of your
functions that create and destroy instances, and the types of arguments passed to the
instance creation function.

void setup (t_messlist **class, method createfun,

method freefun, short classSize, method menufun,

short types...);

class A global variable in your code resource that points to the initialized class.
createfun Your instance creation function.
freefun Your instance free function (see Chapter 7).
classSize The size of your objects data structure in bytes. Usually you use the C sizeof

operator here.
menufun Used only when you’re defining a user interface object. It’s the function that gets

called when the user creates a new object of your class from the Patcher
window’s palette. Pass 0 if you’re not defining a user interface object (how to
write this function is discussed in Chapter 11).

types A standard Max type list as explained in Chapter 3. The final argument of the
type list should be a 0. This list specifies the arguments that are expected when
a new instance of your class is created. These would be the arguments that the
user types in after the name of your class.

As an example, imagine that you want to define a class for an object called + to accept one
integer as an argument. The value 20 will be passed to the object’s instance creation function.
Here’s the structure definition for such a class.

typedef struct _myobj {

struct object m_ob; long m_watchtower;

} t_myobj;

Here are the prototypes of the creation and free functions.

void *myobj_new (long arg);

void myobj_free (t_myobj *x);

Here is the global variable that points to the class .

void *myobj_class;

Here is beginning of the initialization routine, with the call to setup.

void main(void)

{

setup ((t_messlist **)&myobj_class, (method)myobj_new,

(method)myobj_free, (short)sizeof(t_myobj), 0L, A_DEFLONG, 0);

/* additional code will go here */

}

After calling setup, you’ll have a well-defined class that doesn’t know how to do anything. In
order to make it useful, you need to make the class respond to messages. This means that a
t_symbol (such as the word bang) is bound to a function you write (often called a method).
We’ll discuss the functions you’ll use to do this in a moment. There are functions are designed
to make it easy to add standard messages to your class, along with addmess, which allows
you to specify novel messages and give them arguments that will be type-checked for you by
Max.

Basic type list specifiers:

A_NOTHING Ends the type list.
A_LONG Type-checked integer argument
A_FLOAT Type-checked float argument
A_SYM Type-checked symbol argument
A_OBJ Pointer argument (obsolete)
A_DEFLONG Type-checked integer argument that defaults to 0
A_DEFFLOAT Type-checked float argument that defaults to 0
A_DEFSYM Type-checked symbol argument that defaults to 0
A_GIMME You can only specify up to seven arguments in a list.

However, you can specify that Max just hand you the arguments as an array of t_atoms (a
structured type defined below) if you use the following type list:

A_GIMME, 0

This allows you to type check the arguments yourself, and no limit is placed on the number of
arguments that can be included in such a message.

Untyped messages are those whose type list contains the constant A_CANT and cannot be
sent directly by a user using a message box connected to an inlet of your object.

addbang

Used to bind a function to the common triggering message bang.

void addbang (method mp);

mp Function to be the bang method.

addint

Use addint to bind a function to the int message received in the leftmost inlet.

void addint (method mp);

mp Function to be the int method.

addinx

Use addinx to bind a function to a int message that will be received in an inlet other than the
leftmost one.

void addinx (method mp; short inlet);

mp Function to be the int method.

inlet Number of the inlet connected to this method. 1 is the first inlet to the right of the left

inlet.

Note: This correspondence between inlet locations and messages is not automatic, but it is
strongly suggested that you follow existing practice. You must set the correspondence up
when creating an object of your class with proper use of intin and floatin in your
instance creation function (see Chapter 6).

addmess

Use addmess to bind a function to a message other than the standard ones described above.

void addmess (method mp; char *sym; short types...);

mp Function you want to be the method.
sym C string defining the message.
types One or more integers specifying the arguments to the message, in the standard Max

type list format (see Chapter 3).

The addmess function adds the function pointed to by mp to respond to the message string
sym in the leftmost inlet of your object. Type checking of the message’s arguments can be
done by passing a list of argument type specifiers. The list must end with a 0 (A_NOTHING).
The maximum number of type-checked arguments is 7.

gensym

Use gensym to convert a character string into a t_symbol.

t_symbol *gensym (char *string)

string C string to be looked up in Max’s symbol table. If the string is not present, a new
symbol is created.

gensym takes a C string and returns a pointer to the t_symbol associated with the string.
Max maintains a symbol table of all strings to speed lookup for message passing. If you want
to access the bang symbol for example, you’ll have to use the expression gensym("bang").
You may need to use gensym in writing a User Interface object’s psave method to save extra
data besides the object’s box location and arguments. Or gensym may be needed when
sending messages directly to other Max objects such as with typedmess and
outlet_anything. These functions expect t_symbols—they don’t gensym character strings
for you.
The t_symbol data structure contains a place to store an arbitrary value. The following
example shows how you can use this feature to use symbols to share values among two
different external object classes. (Objects of the same class can use the code resource’s
global variable space to share data.) The idea is that the s_thing field of a t_symbol can
be set to some value, and gensym will return a reference to the Symbol. Thus, the two
classes just have to agree about the character string to be used. Alternatively, each could be
passed a t_symbol that will be used to share data.
Storing a value:

t_symbol *s;

s = gensym("some_weird_string");

s->s_thing = (t_object *)someValue;

Retrieving a value:

t_symbol *s;

s = gensym("some_weird_string");

someValue = s->s_thing;

post

Use post to print text in the Max window.

void post (char *fmtstring, void *items...);

fmtstring A C string containing text and printf-like codes specifying the sizes and
formatting of the additional arguments.

items Arguments of any type that correspond to the format codes in fmtString.

post is a printf for the Max window. It even works at interrupt level, queuing up to four lines
of text to be printed when main event level processing resumes. post can be quite useful in
debugging your external object. Note that post only passes 16 bytes of arguments to
sprintf, so if you want additional formatted items on a single line, use postatom.

Example:

short whatIsIt;

whatIsIt = 999;

post ("the variable is %ld",(long)whatIsIt);

The Max Window output when this code is executed.

the variable is 999

error

Use error to print an error message in the Max window.

void error (char *fmtstring, void *items...);

fmtstring A C string containing text and printf-like codes specifying the sizes and
formatting of the additional arguments.

items Arguments of any type that correspond to the format codes in fmtString.
The error function writes a line of text printf-style into the Max window like post, preceded
by the attention-getting string * error. Note that by using this routine to post errors, you let
users trap the messages using the error object.

Example:

error ("bad arguments to %s",myclassname);

Max Window output:

• error: bad arguments to myclass

outlet_int

Use outlet_int to send a int message out an outlet.

void *outlet_int (Outlet *theOutlet, long n);

theOutlet Outlet that will send the message. n Integer value to send.

newobject

Use newobject to allocate the space for an instance of your class and initialize its object
header.

void *newobject (void *class);

class The global class variable initialized in your main routine by the setup function.

You call newobject when creating an instance of your class in your creation function.
newobject allocates the proper amount of memory for an object of your class and installs a
pointer to your class in the object, so that it can respond with your class’s methods if it
receives a message.

intin

Use intin to create an inlet typed to receive only integers.

void intin (void *object, short index)

object Your object. index Location of the inlet from 1 to 9. 1 is immediately to the right of
the leftmost inlet.

intin creates integer inlets. It takes a pointer to your newly created object and an integer n,
from 1 to 9. The number specifies the message type you’ll get, so you can distinguish one
inlet from another. For example, an integer sent in inlet 1 will be of message type in1 and a
floating point number sent in inlet 4 will be of type ft4. You use addinx and addftx to add
methods to respond to these messages. The order you create additional inlets is important. If
you want the rightmost inlet to be the have the highest number in- or ft- message (which is
usually the case), you should create the highest number message inlet first. Creating four
additional integer inlets (for a total of five) would provide the following:

intout

Use intout to create an outlet that will always send the int message.

Outlet *intout (void *owner);

Owner Your object.

Here’s an example of using intout that creates an outlet that will be used to send integers:

mynewobject->m_intout = intout(mynewobect);

defer_low

Use defer_low to defer execution of a function to the main level.

void defer_low (t_object *client, method fun, t_symbol *s, short argc,

t_atom *argv);

client First argument passed to the function fun when it executes.
fun Function to be called, see below for how it should be declared.
s Second argument passed to the function fun when it executes.
argc Count of arguments in argv. argc is also the third argument passed to the

function fun when it executes.
argv Array containing a variable number of function arguments. If this argument is

non-zero, defer allocates memory to make a copy of the arguments (according
to the size passed in argc) and passes the copied array to the function fun
when it executes as the fourth argument.

defer_low always defers a call to the function fun whether you are at interrupt level or not,
and uses qelem_set, not qelem_front. This function is recommended for responding to
messages that will cause your object to open a dialog box, such as read and write.

This defer functions use the isr routine to determine whether you’re at the Max timer interrupt
level. If so, defer creates a Qelem, calls qelem_front, and its queue function calls the
function fun you passed with the specified arguments. If you’re not at the Max timer interrupt
level, the simple defer function is executed immediately with the arguments. Note that this
implies that defer is not appropriate for using in situations such as Device or File manager I/0
completion routines. defer_low is appropriate because it always defers and places events at
the back of the low priority queue.

open_dialog

Use open_dialog to present the user with the standard open file dialog.

short open_dialog (char *filename, short *path,

OSType *dstType, SFTypeList typelist, short

numtypes);

filename A C string that will receive the name of the file the user wants to open.
Path Receives the Path ID of the file the user wants to open.
DstType The file type of the file the user wants to open.
Typelist A list of file types to display. This is not limited to 4 types as in the SFGetFile

trap. Pass 0L to display all types.
Numtypes The number of file types in typelist. Pass 0 to display all types.

This function is convenient wrapper for using Mac OS Navigation Services or Standard File
for opening files. open_dialog returns 0 if the user clicked Open in the dialog box, and
returns the name of the file picked as a C string in filename, its volume reference number in
vol, and its file type in dstType. If the user cancelled, open_dialog returns a non-zero
value.
The standard types to use for Max files are ‘maxb’ for binary files and ‘TEXT’ for text files.

locatefile_extended

Use locatefile to find a Max document by name in the search path. This is the preferred
method for file searching in Max 4.

short locatefile_extended(char *name, short

*outpath, long *outtype, long *typelist, short

numtypes);

name The file name for the search, receives actual filename.
outpath The Path ID of the file (if found).
outtype The file type of the file (if found).
typelist The file type(s) that you are searching for.
numtypes The number of file types in the typelist array (1 if a single entry).

The existing file search routines locatefile and locatefiletype are still supported in
Max 4, but the use of a new routine locatefile_extended is highly recommended.
However, locatefile_extended has an important difference from locatefile and
locatefiletype that may require some rewriting of your code. It modifies its name
parameter in certain cases, while locatefile and locatefiletype do not. The two cases
it where it could modify the incoming filename string are 1) when an alias is specified, the file
pointed to by the alias is returned; and 2) when a full path is specified, the output is the
filename plus the path number of the folder it's in. This is important because many people

pass the s_name field of a t_symbol to locatefile. If the name field of a symbol were to be
modified, the symbol table would be corrupted. To avoid this problem, use strcpy to copy the
contents of a t_symbol to a character string first, as shown below:

char filename[256];

strcpy(filename,str->s_name);

result = locatefile_extended(filename,&path,&type,typelist,1);

path_topathname

Use path_topathname to create a fully qualified file name from a Path ID/file name
combination.

short path_topathname(short path, char *file, char *name);

path The path to be used.
File The file name to be used.
Name Loaded with the fully extended file name on return.

Unlike path_topotentialname, this routine will only convert a pathname pair to a valid path
string if the path exists. Returns 0 if successful, and an error code if unsuccessful.

path_nameconform

Use path_nameconform to convert from one filepath style to another.

short path_nameconform(char *src, char *dst, long style, long type);

src A pointer to source character string to be converted.
dst A pointer to destination character string.
style The destination filepath style (slash style, colon style, etc…).
type The destination filepath type (absolute, relative, etc…).

Converts a source path string to destination path string using the specified style and type. The
available path styles are as follows:

PATH_STYLE_MAX As of version 4.3, Max’s path style is the slash style.
PATH_STYLE_NATIVE This is the path style native to the operating system.
PATH_STYLE_COLON The Mac OS 9 path style used by Max 4.1 and earlier.
PATH_STYLE_SLASH The cross-platform path style used by Max 4.3 and later.
PATH_STYLE_NATIVE_WIN The Windows backslash path style (not recommended, since the

backslash is a special character in Max).

The available path types are:

PATH_TYPE_IGNORE Do not use a path type.
PATH_TYPE_ABSOLUTE A full pathname.
PATH_TYPE_RELATIVE A path relative to the Max application folder.
PATH_TYPE_BOOT A path relative to the boot volume
PATH_TYPE_C74 A path relative to the “Cycling’74” folder.

The function’s return value is an error code.

