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Abstract
The Chinese restaurant process (Pitman, 1996) is a
well-known sequential random construction which
generates observations from the exchangeable par-
tition of the positive integers induced by sampling
from a Dirichlet process. A generalization is provided
by Ishwaran and James (2003) for sampling from
Pitman’s species sampling models. Here we derive a
random graph representation of the exchangeable
partition induced by sampling from the species sam-
pling models. The growing random graph model is
characterized in terms of attachment rules deduced
by a variation of the generalized Chinese restaurant
process, based on the associated sampling distribu-
tion.

1. Exchangeable random partitions
According to Kingman’s theory (1978) if (X1, . . . , Xn)
is a sample from a random distribution F0, the ran-
dom partition Πn = {A1, . . . , Ak} of [n] = {1, 2, . . . , n},
induced by the exchangeable equivalence relation

i ≈ j ⇔ Xi(ω) = Xj(ω),

is an exchangeable partition of [n]. This means that for
each n, the distribution of Πn is such that for each par-
ticular partition {A1, . . . , Ak} of [n], with |Aj| = nj, for
1 ≤ j ≤ k, where nj ≥ 1 and

∑k
j=1 nj = n,

P (Πn = {A1, . . . , Ak}) = p(n1, . . . , nk), (1)

for some symmetric function p of k-tuples of non-
negative integers with sum n (compositions of n),
called the exchangeable partition probability function
(EPPF) of Πn. An infinite random partition Π∞ := (Πn)
of the set of the positive integers N is exchangeable if
its restriction Πn to [n] is exchangeable for every n.

Different ways to encode the random sizes Nj = |Aj|
of the blocks of an exchangeable partition as random
compositions of n may be considered. One way is to
consider the block counts vector, i.e. the random vector
of non-negative integers

M
(n)
i :=

k∑
j=1

1(Nj = i),

for i = 1, . . . , n, subject to
∑n

i=1 iM
(n)
i = n and∑n

i=1 M
(n)
i = k, which counts how many blocks of size

i there are in a given partition of [n], for i = 1, . . . , n.
Due to the bijection between random compositions of
n and possible vectors of counts, for each partition of
[n] the probability that M

(n)
i = mi, 1 ≤ i ≤ n depends

on the EPPF and is given by the following formula,
(see e.g. Pitman, 1996):

p∗(m1, . . . ,mn) =
n!

Πn
i=1(i!)

mimi!
p(n1, . . . , nk). (2)

The best known case of EPPF is the one associated
with the Dirichlet process of parameter µ = θν, and
is given by the following formula:

p(θ)(n1, . . . , nk) =
θk−1∏k

j=1(nj − 1)!

[1 + θ]n−1
, (3)

where n =
∑

j nj and [x]m =
∏m

j=1(x + j − 1).

The Chinese restaurant sequential description of sam-
pling from (3) is well known to be as follows.
Assume that an unlimited number of customers arrives
sequentially in a restaurant with an unlimited number
of circular tables, each capable of sitting an unlimited
number of customers. Let the first customer to arrive
be seated at the first table.
For n ≥ 1, given n1, . . . , nk the placement of the first n
customers at k tables, the n + 1th customer is:

• seated at the table j, with probability pj,n = nj

n+θ,
for 1 ≤ j ≤ k,

• seated at a new table with probability p0,n = θ
n+θ.

2. Prediction rules for the species sampling models
By Theorem 2. in Hansen and Pitman (2000), the class
of species sampling sequences, i.e. of all exchangeable se-
quences (Xn) admitting a prediction rule of the form:

P (Xn+1 ∈ ·|X1, . . . , Xn) =
kn∑

j=1

pj,nδX∗
j
(·) + p0,nν(·), (4)

[where (X∗
1 , . . . , X

∗
kn

), are the kn distinct values in
X1, . . . , Xn, i.i.d with non-atomic probability measure
ν, and nj is the multiplicity of X∗

j ], is characterized
by constraints on pj,n, and p0,n. It is shown that
these quantities can be expressed in terms of EPPF
associated with the random partition generated by
(X1, . . . , Xn) as follows, provided p(n) > 0:

pj,n = pj(n) =
p(nj+)

p(n)
, (5)

for 1 ≤ j ≤ kn, where p(nj+) = p(n1, . . . , nj + 1, . . . , nk),

p0,n = p0,n(n) =
p(nl+)

p(n)
(6)

for l = kn + 1.

In Ishwaran and James (2003) the previous con-
straints are exploited to give a generalized version
of the Chinese restaurant sequential construction,
which provides samples from the partition structure
induced by a species sampling model.

It may be shown (Cerquetti, 2005) that an alternative
characterization of the class of species sampling se-
quences may be obtained resorting to the following
alternative prediction rules, expressed in terms of the
sampling formula (2):

p∗i,n = p∗i,n(m) =
(i + 1)(mi+1 + 1)

n + 1

p∗(m
(i+1)+
i−1 )

p∗(m)
(7)

p∗0,n = p∗0,n(m) =
(m1 + 1)

n + 1

p∗(m1+)

p∗(m)
(8)

where, for i = 1, . . . , n,

p∗(m
(i+1)+
i−1 ) = p∗(m1, . . . ,mi − 1, mi+1 + 1, . . . ,mn). (9)

The corresponding expression for the prediction rule
(4) results:

P (Xn+1 ∈ ·|X1, . . . , Xn) =
n∑

i=1

p∗i,nδX̃i
(·) + p∗0,nν(·), (10)

where for each i, X̃i is one of the distinct values in
(X1, . . . , Xn) with the same multiplicity i.

3. Growing random graphs derived from the CRP
A graph G = (V, E) is a mathematical tool for abstract
representation and modeling network structures, in
which the vertices set V represents units and the
edges set E represents the interactions between pairs
of units. The classical Poisson random graph model
of Erdős and Rény, which is inadequate to describe
some important properties of real-world networks,
has been generalized in a variety of ways.

Here we consider a growing random graph model
defined as follows (recall that given a graph G, a clique
is a maximal complete subgraph of G):

A graph starts with a single isolated vertex.
For n ≥ 1, given the observed clique counts vector,
(m1, . . . ,mn), the n + 1th adding vertex:

• joins one of the existing cliques of order i (i.e. estab-
lishes a connection with each vertex of the clique)
with probability p∗i,n(m), for i = 1, . . . , n,

• stands alone, i.e. starts a new clique, with probabil-
ity p∗0,n(m).

It easy to see that at each step the observed clique
counts vector is a sample from (2).

Example 1. An explicit form for the sampling dis-
tribution (2) is known to be as follows for the two-
parameter species sampling model discussed in Pitman
(1996):

p∗α,θ(m1, . . . ,mn) =

= n!

∏k−1
l=1 (θ + lα)

[1 + θ]n−1

n∏
i=1

(
[1− α]i−1

i!

)mi 1

mi!
. (11)

for 0 ≤ α < 1 and θ > −α. For α = 0, θ > 0 this is the
Ewens sampling formula.
A growing random graph model governed by the
two-parameter model may be easily obtained by
applying rules (7) and (8) to (11).

The attachment rules defining the random evolution
of the graph turn out to be as follows.
Let a graph starts with a single vertex.
For n ≥ 1, given (m1, . . . ,mn) the observed clique
counts vector, the (n + 1)th adding vertex:
• joins one of the existing cliques of order i, with prob-

ability:

p∗i,n =
mi,n(i− α)

n + θ
, for i = 1, . . . , n

• starts a new clique, (i.e. remains isolated), with prob-
ability:

p∗0,n =
θ + α

∑n
i=1 mi,n

n + θ
.

At each time step, the observed clique counts vector
is a sample from (11).

Remark 1. Consider a sequence of random graphs
Gn = (Vn, En) whose vertices are labelled with an
exchangeable sequence (Xn), and edges arise between
nodes i and j such that Xi = Xj as in Cerquetti and
Fortini (2003). If the sequence of the vertices labels is a
sample from a species sampling model, then, for each
n, rules (7) and (8) define a sequential construction
of samples from Gn. Moreover the random graph Gn

decomposes almost surely into random cliques, and
the clique counts vector distribution is given by (2).

Remark 2. An alternative way to construct gener-
alizations of the Erdős-Rényi model is to define a
random graph by specifying its degree distribution.
It easy to show that the model defined in section
3. is characterized by a random degree distribution
governed by a variation of the sampling formula (2).
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