Building a low cost, highly scalable, enterprise level

computer forensics lab

Foreword

Desktop hard drives are becoming bigger and bigger.
However, server hard disks are not growing up at the
same rate.

At present, you can buy a 1.5 Tb Sata hard drive for
about 150 €.
A common 146 Gb 2.5 SAS hard drive costs about 250
€. The Cost to Megabyte ratio means SAS technology is
15 times more expensive.
This is a problem. Desktops are getting bigger but you
need even bigger storage to store all data related to an
investigation and it must be kept also online and secure.
Currently, bigger hard drives are affordable but very
fragile. Broken hard drives are quite common, much
more than in previous years.
So... you need:
1. The flexibility from high-end storage
solutions, like SAN to allow the storage to
grow with your business

2. The cost-effective of actual desktop hard
drives, trying to lower the cost-per-megabyte

3. Availability. No downtime, ever

4. Redundancy. Your data must resist both hard
drive and server crashes

In addition, it should be a very good idea to reach also
these goals:

1. Security: judicial data is very sensitive. The
data should be available only to the
technicians/investigators who must work on
that case, even if they have administration
rights on their analysis machine

2. Multi platform support: Computer forensics
is intrinsically multiplatform. You need to use
Unix, Windows, Mac OS X or whatever. So it's
good to use a common network file system

Technology

We began our business with file servers with NFS.
Simply too many problems. No security at all, network
addressing tied to server name and share name. NFS
was only fast. SMB was not faster than NFS, and was
only better when it came to security. When the server
number grew we had trouble finding data around the
local network.

Building a SAN gave us only new headaches: we

needed new expensive hardware for the infrastructure
(Fiber Channel controller and switch), and both disks
and storage units were much more expensive.

Otherwise we still needed some way to share the SAN
file system to the analysis machines.

We looked for something new in the market. We found
many cluster file system like ocfs (http://oss.oracle.com/
projects/ocfs2/), lustre (http://wiki.lustre.org/index.php?
title=Main_Page) and others, but they were too tied to
cluster logic.

We found some interesting network file systems like
CODA (http://www.coda.cs.cmu.edu/) but it lacks multi
platform support and its development is incredibly slow.

At the end we found OpenAFS

(http://www.openafs.org). OpenAFS is a very interesting
technology:

1. Stable: it's been around since 1989

2. Multi platform: many Unix flavors, Microsoft
Windows, Apple Macintosh...

3. Secure: kerberos-based Authentication,
encryption, strong ACL

4. Enterprise Level: Used by many Fortune 500
companies, Universities, Research Centers,
government organizations

5. Scalable: You can start with a single computer
to reach hundred machines in a single cell

6. Perfect use of the bandwidth

7. 1It's open source! It's open and it's free.

We started building the first OpenAFS Server on
December 2007 and we finished on the first days of
January, 2008.

The first tests were very promising, so we began to
migrate our infrastructure to Open AFS.
Now, one year later, we have:
e Three different forensics
geographic locations

labs, in three

¢ Two kerberos domains and two different AFS
Cells, one for development, one for production

* 40 Tbs storage capacity

e 10 different servers

This is the whole story...

© 2009 Andrea Ghirardini, please share under Creative Common Licence

http://www.coda.cs.cmu.edu/
http://www.openafs.org/

Forensics lab building blocks

Three tier client-server
The main ideas behind the lab are:

¢ Reduce data moving: Forensics labs use huge
files. Every time you move data around the net
you loose so much time.

* Massive use of application servers: if you
don't want to move data around you have to
move applications and processes from the
client side to the server side. Your server must
change from simple file servers to application
server. This idea perfectly fits with the grid
architecture of OpenAFS.

* Homogeneous on server side, heterogeneous
on client side: Our storage/application servers
are all based on OpenSuse 11. Analysis
workstations are Windows, Unix and Mac OS
X machines, both real and virtual.

So we have three different layers:

1. acquisition computers: these are the machines
we use in the field.

2. analysis machines: desktop workstation to
work on data, refine researches, write reports,
work on mobile phones and so on.

3. application/storage server: a grid of
commonly assembled PCs joined together in a
single storage unit. These are used both to store
data and to perform massive searches within
huge amounts of data (a sort of e-discovery)

Acquisition computers

These powerful workstations are used on the field.
When you have to acquire data, following LEAs, copy
machines in a customer's location you need these.

These computers are built around a middle tower
cabinet with a strong handle to carry the computer
around. Notebooks are good only when you need to fly,
otherwise are too limited in I/O speed and storage
capacity.

Inside a Supermicro X8SAX mainboard we have:
(http://www.supermicro.com/products/motherboard/Xeo
n3000/X58/X8SAX.cfm) 6 SATA 1 Tb hard drives, 1
SAS controller, 1 Quad-Gigabit ethernet, and a SCSI
Ultra 320 controller. Operating system is GNU/Linux
and all SATA drivers are joined together as a single
Software RAID level 6. We prefer software RAID,
instead of an hardware one, because it's more usable and
it's simple to recover if something fails.

The quad giga ethernet can be used as 4 different

interfaces (useful, for example, to acquire 4 different
machines full band once) or joined together into a single
trunk to speed up connection (with a little help from the
main switch to create the trunk).

Computer Forensics Live distributions, as DEFT or
CAINE are good companions for our technicians and
helps them to boot target machines with a safe OS to
clone them through the net.

The policy of our labs is to keep these computers clean.
They should always be ready to gather data. So when
we come back from the field these computers are
immediately connected to the LAN to copy all data in
the back-end. When the copy ends, the data raid (usually
mounted on /mnt/repository) is cleaned with a “cat /dev/
zero > /dev/md0”).

Analysis Machines

We used three different kinds of analysis machines.

At the hardware level they are quite similar to
acquisition computers, they have only less storage since
they are connected directly with the common network
file system.

Investigators have full power on the local workstation
so they can launch command as “root” via “sudo” on
Unix and have also “Administration” account on
Windows computers.

Storage back-end can be reached in two different ways:

1. On Unix machine pam (Pluggable
Authentication Module) are changed so
investigators can login only using their
kerberos account. Home directory are in the
OpenAFS so the environment is the same
regardless of the machine used to login. In
particular, we use saslauthd daemon to let the
system searching in the LDAP database, and
pam_krb5 to authenticate the user defined
inside the LDAP database toward kerberos and
to retrieve token for OpenAFS in order to
mount the home directory at the end of the
logon process.

2. On Windows computer people use an
Administrator account to login locally and then
MIT kerberos Client and OpenAFS modules to
access network file system. We prefer this
solution instead of joining the kerberos realm
directly since it works flawlessly also with
Home version of Windows that we often find
right installed on portable computers.
Investigators are able to work on their computers
performing every kind of operation (both user level and
root level) but they are able to see only the cases
assigned to them. There is only one way to retrieve case
data: logging through kerberos on OpenAFS. Even if
you are “root” on a OpenAFS server you can't access
the data on it.

Unix machines are common X86 64 computers with a

© 2009 Andrea Ghirardini, please share under Creative Common Licence

http://www.supermicro.com/products/motherboard/Xeon3000/X58/X8SAX.cfm
http://www.supermicro.com/products/motherboard/Xeon3000/X58/X8SAX.cfm

OpenSuse 11. Every installation is performed with a
standard graphical system with “development” and
“kernel development” profiles added.
We install “screen” and “free-nx” on every analysis
machine, so it's possible to launch even very long
process, safely connecting (using ssh) through the net.
When you have to leave you simply detach the character
“screen” or the graphical session (via free-nx) from your
notebook and the process will continue its work without
any problem.
All forensics software is installed on a specific volume
in the OpenAFS. Adding a new computer it’s not an
issue. Install a new computer, adding OpenAFS client
and everything, from home directories to every software
is just ready-to-go.
In our labs we are using, under Unix (just some
examples):

* The Sleuth Kit (http:/www.sleuthkit.org/):

fundamental for everybody who wants to play
with Open Source CF

* Pyflag (http://www.pyflag.net/cgi-
bin/moin.cgi): Far better than Autopsy

¢ MySQL (http://www.mysgl.org): Pyflag
works on MySQL. We have a specific DB
Server just for it.

* Foremost (http:/foremost.sourceforge.net/):
file carver made easy

* dhash
(http://www.deftlinux.net/wiki/index.php/Dhas
h): fast multiple hash calculating program

¢ dcfldd (http://dcfldd.sourceforge.net/): the
standard open source forensics variation of
“dd”

¢ wireshark (http://www.wireshark.org/): useful
in network forensics

¢ Xplico (http://www.xplico.org/): network
dissector for tcp application layer
Open Source Computer Forensics tools could seem
quite raw compared to some new “bells and whistles”
commercial computer forensics packages, though not
only being the most up to date, and also the only
available way to investigate some “not so widespread”
computer architectures and information systems.

Windows analysis machines have around three useful
main tools we experienced along the last years.

The first one is X-Ways Forensics (http:/www.x-
ways.net). It's very good computer forensics
environment.

We tried many different computer forensics software:
Encase from Guidance, UTK/FTK from Access Data,
P2 Commander from Paraben, X-Ways Forensics from
X-Ways.

The last one is an excellent product, showing some
advantages over those other competitors:

¢ It's small: The core is about 3 Mbyte,

the entire program (viewer included)
is no more than 15 Mb. It can be
copied in a USB Thumb drive and
launched from it.

Has a very good core: X-Ways Forensics is built around
WinHex, which is a killer application among hex editors
in the Windows world.

Has many interesting functions, an internal database
engine lighter than Oracle, the Stellant Software viewer
and it has a very fast development cycle.

Side-by-side we have the software we use for mobile
forensics analysis. It's obviously based (no serious open
source software is available at the present) on a
Windows machine and two different mobile forensics
products, Oxygen Forensics Suite 2 and UFED
Cellbrite. We choose these two products because they
have a very large support of European GSM phones, a
strong smartphone support (Windows, Mac OSX and
symbian ones), and a very good technical support.
UFED is also a good standalone product for on the field
operations.

All of our Windows machines use nVidia 8800 GT and
are joined together as single cluster with Elcomsoft
distributed password cracker with GPU support. We can
speed up to 1.500.000.000 ntlm passwords per second in
password cracking.

The Back-end

We are proud to say that the back-end is the gem of our
lab. It has the all the features of an high-end solution
with no disadvantages discovered until now, and it costs
a fraction of the price. It's based upon two main
components: an authentication server and a cell of
OpenAFS servers.

Authentication Server

We decided to use an Unix machine with a MIT
kerberos V Server for authentication and OpenLDAP for
accounting.

We chose kerberos because it's a standard protocol, it's
supported by many different services (included
OpenAFS as common network storage) and operating
systems (Unix, Windows and Mac OS X work all well),
it's very secure and useful to implement a single sing-on
solution among all forensics lab.

We have a master kerberos and LDAP server, aided by a
slave kerberos and LDAP server in every remote site.
The only change we applied to the default configuration
has been to increase the lifetime of the ticket from 10
hours to 3 days (many computer forensics processes run
just too long).

Application Server and OpenAFS

OpenAFS is a wonderful piece of software. Compared
with other network operating system and protocols it is

© 2009 Andrea Ghirardini, please share under Creative Common Licence

http://www.x-ways.net/
http://www.x-ways.net/
http://www.xplico.org/
http://www.wireshark.org/
http://dcfldd.sourceforge.net/
http://www.deftlinux.net/wiki/index.php/Dhash
http://www.deftlinux.net/wiki/index.php/Dhash
http://foremost.sourceforge.net/
http://www.mysql.org/
http://www.pyflag.net/cgi-bin/moin.cgi
http://www.pyflag.net/cgi-bin/moin.cgi
http://www.sleuthkit.org/

simply ahead.

First of all you can forget about the basic concept of a
File Server. Many operating systems force you to use
the server name or address in the network path to reach
the shared folder. NFS and SMB are two classical
examples.

This is quite frustrating if you have many file servers in
your network. Your data is splitted through many
different computers and it's just too hard to remember
where the data is.

To avoid this problem you could think to shrink all of
your server in a “big iron” with a SAN behind.

This move should help you to minimize the
fragmentation problem but you have to spend much
more money to use enterprise level hardware and,
moreover, you have to say “bye bye” to the computation
power of your distributed network. If you plan to use it
on file server service this is not a problem but, in a
computer forensics environment with many enormous
hard disk image files, it's not a good idea. Every time
you move one of this files through the net, even full
gigabit ones, you slow down the entire analysis process.
It's far better to use your file server also as an
application server, moving all data intensive processing
server side. If you have a single file server you can't
work on many cases at the same time.

OpenAFS can help you obtaining a common storage
shared among many servers.

First of all, you must think you have a single tree in
every cell (which is a set of file servers). This network
tree is comprised of “volumes”.

Note: When you log into the cell you are authenticated
automatically toward all file servers in the cell. Also
system administration need to have just an
administrative account in the cell and can be performed
from every machine in the cell, a client or a server as
well.

Volumes are some sort of “piece of file system”.
They can contain files, directories and mount points for
other volumes, so they can be nested within each other.
The base volume of the tree is always the “root.afs”
volume (mounted on /afs), followed by “root.cell”
mounted on the name of the cell (for example forensics-
lab.com) inside /afs (ex. /afs/forensic-slab.com)

Inside the root.cell volume there will be the mount
points to the other volumes distributed among all
servers of the cell.

Two other interesting concepts about OpenAFS.

The first one that OpenAFS uses a Unified Named
Space, for every cell. It's always the same regardless the
operating system in the client or server side. So every
machine in the cell has the same view of the network
file system. Even in Windows you only need to map a
single network drive where you see the entire afs tree.
The second one is about volumes and how the client
side finds the location of the volume inside the cell.
There are two main components inside OpenAFS, one
client side (Cache Manager) and one server side
(Volume Locator).

OpenAFS uses asynchronous logic. Clients are never
directly connected with the file servers. Instead the
Cache Manager asks the Volume Locator server where
the file is. Then the correct file server sends the file (if
it's small) or a part of it (if the file is large; useful when
you are using image files) to the cache manager. Then
the client will use the data present in its cache. When
the user chooses to save, the cache manager will send
the new file (or portion of it) back to the server. If
someone else changes the file on the server in the
meantime, the Volume Locator will advise all other
client to refresh their cache as well.

Note: This works incredibly well also in WAN
environments. The INFN (Italian National Nuclear
Physics Labs), for example, has a single cell with
various sites in many areas of Italy.

The system works incredibly well. Tuning client cache
to use 128 to 256 Mbyte of memory cache, you can
mount a dd image remotely through loop devices as if it
were a local file. You can send a dd image to the remote
storage (using a Gigabit ethernet) at 60 Mbyte per
second as sustained transfer rate.

This architecture gives OpenAFS many other features.
First of all you can do everything you want with the
volume. You can move, replicate, take a snapshot,
dump or backup one of them anytime, without a
single downtime and when the users are working
with the volumes.

As a consequence you can add as many servers as you
want in the cell. The idea behind OpenAFS is quite
similar to grid computing, if you want more storage you
only have to install a new server. The system is scalable
and flexible enough to grow up along with your needs.
The process is simple. Install the operating system, add
the server to the cell with two “bos” commands and it's
done.

Then you can move volumes directly to the new server,
without any impact to the network tree.

Our typical OpenAFS server is an assembled computer
like this:

Cabinet: Cooler Master G-lite

Mainboard: MSI KA9A2 Platinum

CPU: AMD Phenom 9500

Memory: 4 Gb

Graphic card: 8800 GT

HD: 6 x 1 Tb SATA HD for a single 5 Tb

software RAID 5.

This server cost us no more than 1300 €. If you try to
calculate cost per gigabyte is about 0.21 Eurocent.

It should be about 1.7 € per Gigabyte if you plan to use
SAS disks, considering just the cost of the disks. No
cabinet/rack, nor fiber channel hub has been considered.
So the total price should be even higher.

If you plan your OpenAFS wisely, you can use cheap
hardware. You can swap disks if they break (software
raids compensate the problem). If you carefully plan
replication of the volumes and backup (both are native
functions of the OpenAFS and you don't need anything
else to implement them) you can also loose an entire file
server without loosing data. So file server can be

© 2009 Andrea Ghirardini, please share under Creative Common Licence

thought just as simple building blocks of the entire
network file system.

They are just a brick and can be swapped easily.

Another interesting feature of OpenAFS is how it can
store data on its server. OpenAFS wants to save his data
on entire file systems (i.e. they can’t be a piece of the
root filesystem of the machine) mounted on directory
from /vicepa to /vicepz and from /vicepaa to /vicepzz.

& - [B]x]

v

(=3

Picture 2: Files in the raw OpenAFS Filesystem

OpenAFS uses these file systems as raw devices. It
saves data in a very strange way, splitting everything in
a incredibly complex tree of hundreds of directories.

It's nearby impossible to rebuild data without the help of
OpenAFS daemon.

This means that, even on the server, you can't access to
the data without logging in the kerberos and getting the
token. So even the server can access data only acting as
a normal client for the OpenAFS net.

When you work on OpenAFS as client you are tied to
the strong security of the file system. OpenAFS support
multiple ACL per directory defined per user or group.
OpenAFS supports 7 different permissions:

“1”

lookup, permission to view the contents of a

directory
“ insert, insert new file in a directory
€C 199
d delete

“a” administer, the permission to change ACLs
“r read

“w” write or modify files

“k” lock

In our policy, forensics technicians have all permission
apart “a” and “d”, so they can write and modify but
cannot delete anything and changing ACLs.

If you carefully plan the ACLs, configure “sudo” in a
wise manner and log everything in a remote log
server, you can use servers as additional analysis
machines. The main advantage is that servers can access
their own volumes through a “network loop device”
which is much faster than the real net.

So we installed all the OpenAFS server with the same
software of the analysis machine. From our point of
view they are essentially the same. Simply, server have
mount points to raw OpenAFS data.

This approach helped us, during the last year, to save
probably weeks of work moving server side the most
I/0 intensive operations. Think about keyword
searches, distributed among many server, every one of
them searching on its own volumes.

Another function which seems to be created just for
computer forensics is snapshot. You can freeze the
state of a volume in a certain time. This is an incredibly
useful feature to avoid to change the state of the
evidence even if you plan to perform some test that
inevitably modifies the evidence. You don't need to
copy huge files many times. Simply create a new
snapshot every time you need.

The only problem we have is with database files. Since
we are using pyflag (which uses MySQL as back-end)
we created a separate MySQL server since even the
Administration manual itself doesn't advice about how
to install a kind of RDBMS into an OpenAFS volume.

Conclusions

This labs grow up with us in the last two years. Working
both with Open Source and Commercial Computer
Forensics tools helped us to choose the right tool in
every case even if the target computer wasn't a classical
Windows machine.

On the other hand working with OpenAFS helped us to
investing our budget on learning (and training to the
new ones) computer forensics instead of buying
enterprise-level hardware and software and adding
computation and storage power a brick at time. We
learnt that the difference is done by the humans skills
not by the cost of the technology used.

© 2009 Andrea Ghirardini, please share under Creative Common Licence

	Building a low cost, highly scalable, enterprise level computer forensics lab

